RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [2016-19] B.A./B.Sc. FIRST SEMESTER (July – December) 2016 Mid-Semester Examination, September 2016

Date : 10/09/2016 Time : 11 am - 1 pm

MATHEMATICS (Honours)

Paper : I

Full Marks : 50

[4×3]

[Use a separate Answer Book for each group]

<u>Group – A</u>

(Answer <u>any four</u> questions)

- 1. For any three nonempty sets A, B and C prove that $A \times (B-C) = (A \times B) (A \times C)$.
- 2. Let S be a finite set with n elements. Prove that the number of binary relations on S that are both reflexive and symmetric is $2^{\frac{n(n-1)}{2}}$.
- 3. Let us consider the map $f: A \rightarrow B$. Show that f is left invertible if and only if f is injective.
- 4. Prove that a semigroup (S,*) is a group if and only if left identity exists and left inverse for every element exists in S.
- 5. Let H and K be two subgroups of a group G. Show that HK is a subgroup of G if and only if HK = KH.
- 6. Prove that every partition of a set A yields an equivalence relation on A.

<u>Group – B</u>

7.	An	swer <u>any three</u> questions :	[3×5]
	a)	If $x, y \in \mathbb{R}$ with $y > 0$, then prove that there exist $n \in \mathbb{N}$ such that $ny > x$.	[5]
	b)	Define an open set in \mathbb{R} . Show that the union of an arbitrary collection of open sets in \mathbb{R} is an open set in \mathbb{R} .	[1+4]
	c)	Define limit point of a set in \mathbb{R} . Prove that the derived set of a set in \mathbb{R} is closed.	[1+4]
	d)	Define convergence of a sequence. If $\lim u_n = u$, $\lim v_n = v$ then show that $\lim (u_n v_n) = uv$.	[1+4]
	e)	Prove that the sequence $\{u_n\}_n$ defined by $u_1 = \sqrt{2}$ and $u_{n+1} = \sqrt{2u_n} \forall n \in \mathbb{N}$ converges to 2.	[5]
8.	An	swer <u>any two</u> questions :	[2×5]
	a)	Show that the equation of the line joining the feet of perpendiculars from the point (d, 0) on the lines $ax^2 + 2hxy + by^2 = 0$ is $(a-b)x + 2hy + bd = 0$.	[5]
	b)	Find the chord of contact of the conic $\frac{\ell}{r} = 1 + e \cos \theta$ joining the points of contact of the tangents drawn from the external point (r', θ') .	[5]
	c)	Prove that the conics $\frac{\ell_1}{r} = 1 - e_1 \cos \theta$ and $\frac{\ell_2}{r} = 1 - e_2 \cos(\theta - \alpha)$ will touch one another if $\ell_1^2(1 - e_2^2) + \ell_2^2(1 - e_1^2) = 2\ell_1\ell_2(1 - e_1e_2\cos\alpha)$.	[5]

<u>Group – C</u>

9. Answer any two questions :

a) Prove that $2\frac{dy}{dx}\frac{d^3y}{dx^3} = 3\left(\frac{d^2y}{dx^2}\right)^2$ if $y = \frac{\ell x + m}{px + q}$ where ℓ , m, p, q are arbitrary constants and if $\ell + q = 0$ then prove that $(y - x)\frac{d^2y}{dx^2} = 2\left(1 + \frac{dy}{dx}\right)\frac{dy}{dx}$. b) Solve : $(xy + 2x^2y^2)ydx + (xy - x^2y^2)xdy = 0$.

c) Solve the equation by the method of variation of parameters $\frac{dx}{dt} + \frac{a}{t}x = \frac{b}{t^n}$ where n is any positive real member, a and b are constants.

10. Answer any one question :

- a) Prove that the necessary and sufficient condition that Mdx + Ndy = 0 will be exact when $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$
- b) Solve: $y px = \phi(x^2 + y^2)\sqrt{1 p^2}$, where $p = \frac{dy}{dx}$ and ϕ is any function with positive value.

_____× _____

[1×5]

[2×4]